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Spatio-Temporal Complexity in
Nonlinear Image Processing

Abstract-Tlds is a pictorial survey of pattern dynamics in video feed-
back and in related numerical models. After a short introduction to video
feedback apparatus and concepts from dynamcal systems theory, a range
of phenomena are presented, from simple attractor types to homogeneous
video turbulence. Examples of complex behavior include symmetry-locking
chaos, spatial amplification of fluctuations in open flows, dislocations,
phyllotaxis, spiral waves, and noise-driven oscillations. Video experiments
on nonlinear transformations of the plane are also described . T'he survey
closes with a discussion of the relationship between dynamcal systems and
nonlinear, iterative image processing.
'Keywords-Attractor, basin, chaos, coherence, complexity, dimension,

dislocations, entropy, flows, image processing, lattice dynamcal systems,
limit cycle, mappings, partial differential equations, phyllotaxis~ reaction-
diffusion, spatially extended systems, spiral waves, transients, turbulence,
video feedback .

I . INTRODUCTION
HAOS is now the most notorious [1] and well-studied
[2], [3] source of complex behavior arising in nonlin-

ear deterministic processes . The specific complexity-gener-
ating mechanisms referred to under this rubric are not the
entire story, however . As the following pictorial survey will
demonstrate, complexity in spatio=temporal systems de-
mands substantial generalizations to the basic theory of
dynamical systems and to our present appreciation of the
diverse forms manifested by the interplay of randomness
and order. Although chaos is only one of many complex
phenomena, the rapid progress made in its understanding
gives hope that the diversity of spatio-temporal - behavior
will also yield to a similar "experimental mathematical"
approach [4] .

Indeed, the partictilar spatial systems presented in the
following, video feedback [5] and lattice dynamical systems
[6], were taken up in order to address the larger questions
of just how dynamical systems theory, as developed for
understanding low-dimensional chaos, could be applied to
a wider range of physical processes, viz . those whose
behavior depends on time and on space. Along the way a

. number of new phenomena and connections with well-
known behavior were discovered . This, pictorial survey is
concerned with this phenomenology as ,it appears in two
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spatial dimensions. First, though, basic notions from dy-
namical systems and the apparatus of video feedback must
be introduced . After presenting a range of different phe-
nomena in video feedback and related numerical models,
the discussion closes by addressing several general ques-
tions of interest to engineering . Specifically, the last section
considers the relevance of the experimental-mathematical
approach to the "engineering" of nonlinear image pro-
cessing systems.

II .

	

VIDEO FEEDBACK

Space does not allow a detailed introduction to the
topics covered in the following sections (the reader is
referred to a paper [5] and references therein, and to a
videotape [7] for this) . In the former, a more complete
discussion of the experiments and related video physics is
presented. . In the latter, excerpts from various experiments
can be seen evolving in time . Since one of the major focal
points is the complexity of time-dependent behavior, the
videotape is a substantial improvement over the static
images required by a conventional publication format. An
even better approach is for the reader to experiment with
video feedback directly, which is highly encouraged . Al-
though scientific experimentation requires careful calibra-
tion and instrumentation quality equipment, most of the
phenomena described below can be observed in consumer
grade video equipment with patient investigation . For an
introduction to lattice dynamical systems, a class of numeri-
cal models that evolved out of the video feedback investi-
gations, see [6] .
The basic configuration of - a video feedback system is

quite simple . When a video camera is directed at a display
monitor, to which it is connected, a feedback loop is
closed. Two-dimensional images I(x, y) from the monitor
screen impinge on the camera's photodetector after passing
through space and optical processing elements. The camera
dissects the image into an electronic signal V(t) by raster
scanning the intensity profile on the photodetector into a
temporal sequence of horizontal lines . The video signal
V(t) gives the intensity of a point, or pixel, along a raster
scan line at time t . The signal arrives at the monitor after
electronic processing and is reconstructed as a two-dimen-
sional image on its screen . Thus as it flows around the
loop, there are two domains in which the image informa-
tion can be processed : optical and electronic .
Optical image processing often consists passing the image

through various lens systems that control the -light inten-
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sity gain (iris), image focus, and spatial magnification and
filtering. There might also be nonlocal image processing,
such as image translation or rotation . The latter can be
effected by mounting the camera so that it rotates about
its optical axis . Electronic processing provides spatially
local image processing as it operates directly on the in-
stantaneous intensity signal V(t), that is, on horizontal and
possibly vertical pixel neighborhoods. Electronic image
processors provide modules to handle the basic video
frame and line-synchronization, to add and multiply images
point by point, and to perform nonlinear pixel and pixel
neighborhood transformations [8]. Spatially nonlocal elec-
tronic image processing can be performed by manipulating
the raster geometry itself and displaying the result on a
suitably modified monitor [9].
A question that frequently arises in using electronic

systems to investigate theoretical problems of complexity
is whether the process involved is a simulation or an
experiment . The distinction is somewhat moot as long as
science is served . Nonetheless, it should be said that once
the functional elements are well characterized, video feed-
back as an experiment becomes video feedback as simula-
tion. This is simply a change in the experimenter's attitude
rather than in the apparatus or the phenomena observed .
Speaking broadly, as a simulator video feedback allows
one to study the class of systems, called reaction-diffusion
partial differential equations introduced by Alan Turing
[10] . It can do much more than this, though, such as
simulate spin glasses, neutral networks, delay-partial-dif-
ferential equations, multi-species chemical reactions, and
so on . Discussion of these systems is beyond this survey's
scope.

III .

	

DYNAMICAL SYSTEMS

A central motivation in studying video feedback has
been to understand how the geometric picture_and_ statisti-
cal methods of dynamical systems theory can be gen-
eralized to explain the complexity observed in time-
dependent pattern generating systems. Thus to put the
investigation in the proper framework, the following sec-
tion introduces a few notions from dynamical systems
theory [2], [3] that will be used later on .
The primary abstraction of dynamical systems theory is

that the instantaneous configuration of a process is repre-
sented as a point, or state, in a 'space of states. The
dimension of the space is the number of numbers required
to uniquely specify the configuration of the process at each
instant . With this, the temporal evolution of the process
becomes the motion from state to state along an orbit or
trajectory in the state space.

For video feedback the space of states is the space of
two-spatial-dimension patterns I(x, y) . For a mono-
chrome system I(x, y) is the intensity at a point (x, y) on
the screen ; for color, I consists of a vector of red, green,
and blue intensity components . The dimension of the
equivalent dynamical system is given by the effective num-
ber of pixels . For the behavior described below a (rough)
upper bound of the dimension of the state space is 'Only dissipative dynamical systems will be described here.
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250 000 ( = 5122). The temporal evolution of patterns is
thus abstractly associated with a trajectory in this high-di-
mensional state space. If the behavior is simple, however,
then the trajectory can be pictured as moving in a much
lower dimensional subspace .

If a temporal sequence of patterns is observed to be
stable under perturbations, then we assume that the
trajectory lies on some attractor in pattern space. One of
the main contributions of dynamical systems theory' is the
categorization of all long-term behavior into three attrac-
tor classes: fixed point, limit cycle, and chaotic attractors .
A fixed point attractor is a single, isolated state toward
which all neighboring states evolve . A limit cycle is a
sequence of states that are repetitively visited. One can
also have a "product" of limit cycle oscillators, called a
torus and denoted T" where n is the number of con-
stituent cycles. These attractors describe predictable be-
havior : two nearby states on such an attractor stay close as
they evolve . Unpredictable behavior, for which the latter
property is not true, is described by chaotic attractors .
These are often defined negatively as attractors that are
neither fixed points, limit cycles, nor tori.

Aside from attractor classification, another significant
contribution of dynamical systems theory is a geometric
picture of how transients relax onto the attractors. An
attractor's basin of attraction is the set of all points that
evolve onto the attractor. There can be multiple basins and
attractors, so that radically different behavior may be seen
depending on the initial configuration. The complete cata-
log of attractors and their basins for a given dynamical
system is called its attractor-basin portrait.

Finally, dynamical systems theory is also the study of
how attractors and basin structures change with the varia-
tion of external control parameters . A bifurcation occurs if,
with the smooth variation of a control, the attractor-basin
portrait changes qualitatively .
To summarize, dynamical systems theory is a language

that describes how complexity arises in (i) asymptotic
behavior, (ii) basin structure, and (iii) bifurcations . It
forms a natural framework with which to explore the
complex spatao-temporal dynamics of video feedback . The
pictorial essay which follows is organized along the par-
ticular phenomena that have been observed in video feed-
back . The sections are more or less independent.

IV.

	

BASIC SPATIO-TEMPORAL ATTRACTOR TYPES

This section demonstrates the basic attractor types : fixed
points as time-independent equilibrium patterns, limit
cycles as periodic image sequences, and a chaotic attractor
arising from the competition of marginally stable symme-
tries.

Photo 1 shows a time-independent and stable pattern.
The dynamical system description of this is a fixed point
in the space of patterns. Although there are very simple
fixed point patterns, such as an entirely dark image, the
one shown is complex. This emphasizes an important
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distinction with conventional theory in which one does not
associate any intrinsic complexity with a fixed point. In
the case of spatially-extended systems, measuring the com-
plexity even of fixed points is clearly desirable. Quantifica-
tion of spatial complexity, however, is fraught with diffi-
culties at present.

Photos 2, 3 and 4 give three snapshots during one cycle
of a periodic sequence of patterns . This is a limit cycle in
pattern space and is stable under small perturbations .

Photos 5 through 8 show a sequence of snapshots from
an aperiodic image sequence. Here there are two marginal-
ly stable patterns of fourfold and 21-fold symmetries . The
trajectory visits neighborhoods of these patterns intermit-
tently. Analysis of the time-dependent Fourier amplitudes
of the underlying symmetric pattern shows the behavior is
described by low-dimensional dynamics and is globally
stable, and that starting from nearby patterns orbits sep-
arate rapidly. Thus, the behavior is most likely described
by a chaotic attractor, although the (necessary) measure-
ment of the metric entropy has yet to be carried out.

V. DISLOCATION DYNAMICS

Photos 9 and 10 show the interdigitated light and dark
fingers of video dislocations . Similar patterns occur in a
wide range of physical and biological systems, such as :

(1) convection cell patterns found in Rayleigh-B6nard
and Couette fluid flows and in liquid crystal flows;

(2) domains in two-dimensional (anisotropic) spin sys-
tems, such as thin magnets used for magnetic bubble
devices;

(3) labyrinthine patterns in ferrofluids ;
(4) flux patterns in type 11 superconductors; and
(5) the ocular dominance pattern in the visual cortex .

While the particular mechanisms responsible for disloca-
tions in these examples differ greatly, there is a common
element . In each there is an "order parameter" that alter-
nates between saturation extremes over some fixed spatial
length scale. The order parameter in each of the examples
above is (1) the direction of fluid flow, charge transport, or
(2) local magnetization; (3) the existence or absence of
ferrofluid ; (4) the local conductivity, and (5) the variation
of left or right visual field associated with cortex columns.
The diversity of examples calls for a general definition

of dislocations. They can be defined as the localized de-
fects arising from the breaking of a -pattern's underlying
spatial symmetry. The patterns that exhibit the exact sym-
metry are the "ground" or "vacuum" 'states . The lowest
energy perturbations from these equilibrium states are
dislocations.
A wide range of dislocation dynamics is readily ob-

served . In the typical evolution from a random initial
pattern, the system first establishes the characteristic spa-
tial wavelength and produces a tangle of "frustrated"
fingers with many dislocations. The dislocations collide
and annihilate and the pattern becomes more regular. At
this point the system may continue to evolve t
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complex patterns or it may begin to spontaneously create
dislocations . In the former case, the attractor is a fixed
point reached by a complex transient. In the latter case,
the attractor manifests itself as a pattern sequence of a
"gas" of capriciously-moving dislocations, whose creation
and annihilation rates balance. One of the interesting
questions here is how to describe the underlying state
space structures [11] .

Dislocations result from the interplay of two processes.
The first is the local bistability of the order parameter.
Values of the order parameter intermediate between the
saturation extremes are unstable . The second is "lateral
inhibition", to borrow a phrase from neurophysiology.
This imposes the spatial length scale over which the order
parameter alternates by forcing neighbors bordering a
region into the opposite saturation state from the region
itself.

In video feedback, dislocations are found when using
photoconductor-based cameras at high beam current. It
appears that secondary electrons are scattered from the
beam spot to neighboring regions . In a relative sense, this
reduces photosensitivity in those regions when the beam
scans illuminated photoconductor and increases it when
the beam scans dark photoconductor .
A simple numerical model of dislocations that embodies

these processes is given by the following discrete time and
space lattice dynamical system [6] :

where
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are the coupling kernel coefficients
which control the lateral inhibition
and set the finger width. For site 1
and possibly its near neighbors, the
coefficients are positive . This gives
a diffusive coupling. For sites fur-
ther away, the coefficients are
negative which gives inhibitory
coupling ;
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for k > 0 gives the stable satura-
tion values of x = 0 and x =1 . This
function is related to the widely
studied map of the circle [2].

Photos 11, 12, and 13 show the relaxation from a
random initial pattern in a d = 2 lattice after 20, 100, and
1100 iterations . Here a 90° rotation of the image is per-
formed on each_ iteration by a suitably chosen nonlocal
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nonlinear electronic processing is simplified so that it clips
to black and white values . Second and more importantly,
radial pattern motion can be suppressed by imposing
annular boundary conditions with an annular mask
centered about the camera-monitor optical axis . This leads
to a nearly one-dimensional channel with periodic
boundary conditions .
With this setup the camera can be rotated and the effect

of the imposed azimuthal symmetries studied systemati-
cally. In the language of dynamical systems, the camera
angle is the control parameter and we are investigating the
bifurcations between stable symmetric patterns. To take a
simple example, when the camera is rotated 90 degrees the
pattern must have an overall four-fold symmetry. Simi-
larly, for 120 degrees, there is a three-fold symmetry. Thus,
there must be a bifurcation between these stable symmetric
patterns as the camera angle is varied from 90 to 120
degrees.

Photos 27 through 31 show a bifurcation sequence of
patterns as the angle is increased quasistatically through
approximately 10 degrees. The first (photo 27) exhibits a
five-fold symmetry that rotates counter-clockwise . The sec-
ond (photo 28) is taken at an angle of 72 degrees. It is
stationary and also shows a five-fold symmetry as ex-
pected. The third (photo 29) has the same symmetry but
rotates clockwise . The fourth photo (photo 30) shows an
unstable pattern at the angle of bifurcation . At larger
angle, a stable thirteen-fold pattern appears (photo 31).

9.2 . Transition to Fully Developed Video Turbulence
One of the motivating physical problems for nonlinear

dynamics has been the nature of fluid turbulence. While
low-dimensional chaotic behavior has been implicated at
the very onset of (weakly) turbulent flows, it is at present
unclear how this chaotic attractor picture will fare for
more complex fluid flows in which spatial decorrelation is
observed [11] . Video feedback again provides an easily
manipulated test-bed for studying two-dimensional
"fluids" with complex local dynamics that are spatially
incoherent . This section presents an example of the transi-
tion to fully developed video turbulence.

Photos 32, 33, 34, and 35 show this transition as a
function of the strength of nonlinearity'in the local dy-
namics . The latter maps the local intensity I through a
cubic function f(I) = h (I + bl 2 + `eI3) whose height h is
the nonlinearity control parameter . The cubic function can
be implemented with either an analogdiode function gen-
erator or with a digital look up table. The first photo (32)
shows the pattern at low nonlinearity : an inversion of the
local intensity is seen ; the pixel intensities visit a negative
slope region of f(x ). This plus the 90 degree camera angle
give rise to the alternating light-dark, four-fold symmetric
pattern. At higher nonlinearity (photo 33) the smooth
boundaries have broken down revealing smaller scale
structure and limited local time-dependent behavior . The
next photo (34) shows that large-scale structure has broken
down entirely : spatial coherence is lost and the local
dynamics is quite aperiodic . This is the analog of fully
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developed turbulence . The last photo (35), taken at yet
higher nonlinearity, demonstrates homogeneous video
turbulence in which the spatial scale of structure is smaller
and the temporal frequencies are higher than the preceding
photo.
A quantitative estimate of the complexity of such turbu-

lence follows from a Kolmogorov eddy-scale argument .
From this, the attractor dimension is approximately 2 X 10 3
and the information production rate, called the metric
entropy, is approximately 6x104 bits per second.

X. ATTRACTOR-BASIN PORTRAITS FOR
TWO-DIMENSIONAL MAPS

Somewhat amusingly, video feedback provides for the
investigation of conventional nonlinear maps of the plane.
A map T: R'-+R 2 of the plane 1B 2 takes a point z= (x, y)
into a new point z'= (x', y') = (f(x, y), g(x, y)). The
functions f and g implement a nonlinear distortion of the
plane.

Since there are only two component variables rather
than an entire screen full, these dynamical systems are
much simpler than the spatially-extended systems to which
video feedback is naturally adapted . If we identify the
plane of a video image with the plane of states for a
two-dimensional map, video feedback allows for the
simultaneous simulation of (two-dimensional) ensembles of
initial conditions. The basic image processing requirement
is that the transformation effected by the feedback process
warp the video raster in a nonlinear fashion prescribed by
the two-dimensional mapping T. This is the essential func-
tion of the Rutt-Etra Video Synthesizer . This device is
comprised of a set of video frequency locked oscillators
that are used to drive the yoke of a modified monitor . The
frequency, amplitude, and wave form of the oscillators
determine the nonlinear raster transformation . The camera
is simply directed at this monitor to close the feedback
loop .

Photos 36 through 46 show some examples of the inves-
tigations that are readily performed with such a system .
Here the only nonlinear processing of the video signal
amplitude is clipping to black or white.
Photo 36 shows a chaotic attractor with characteristic

folds and fractal structure . The latter appears as detailed
filamentary structure. In video feedback, as in most experi-
ments, the detail is truncated by finite resolution and
noise. The mapping performed is a dissipative version of
the area-preserving standard map [15].

Photos 37 and 38 show a piecewise-linear mapping due
to Lozi [16] . At low nonlinearity there is a period 2 orbit.
Photo 37 shows an ensemble's approach to this along a
stable manifold with homoclinic tangle structure. A chaotic
attractor at higher nonlinearity appears in Photo 38 . Pho-
tos 39, 40, and 41 illustrate the approach of an ensemble of
initial conditions to a period 4 attractor.
A period-doubling bifurcation sequence to chaos is

shown in the next set of four photos (42, 43, 44, and 45) as
a function of increasing nonlinearity. The sequence starts
at a fixed point (42) which then becomes unstable (43) and
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the collision and annihilation of dislocations, onto a fixe
point attractor consisting of concentric rings.

VI .

	

COUPLED RELAXATION OSCILLATORS

Many physical, chemical, biological, and engineering
systems can be described as coupled relaxation oscillators.
Each oscillator plays the role of a local clock: counting up
and resetting to some reference state . While the coupling
communicates the local phase information to accelerate or
retard neighboring oscillators. This section illustrates some
of the spatio-temporal patterns that can emerge from this
combination: spiral waves and transient spatial chaos.

Spiral waves occur in an active medium with periodic
local dynamics diffusively coupled . The most famous ex-
ample of this behavior is the Belousov-Zhabotinsky chem-
ical reaction [12]. Photos 14, 15, and 16 show the center of
three different spiral waves with one, two, and three spiral
arms [13] found in video feedback experiments. Dynami-
cally every point in the pattern has a well-defined oscilla-
tion phase except for the spiral center where there is a
phase singularity . In each photo the distinct colors label
stages of the local oscillations .
The second example is a model of a water layer dripping

from a flat surface. The equations of motion are similar to
that for the dislocation model, except there is simple
spatial averaging (all cj = constant) and the local piece-
wise-linear dynamics is f(x) = w + sx (mod 1) . The param-
eter w gives the increment in the local variable on each
iteration. This determines, if s =1, the clock's period . The
parameter s controls the slope which determines the clock's
stability : if s < 1 the cycles will be stable . The (mod 1)
operation performs the resetting or dripping of a thick
region of the water layer.

Photos 17 and 18 show the patterns after 310 and 492
steps starting from a uniform pattern with the center site
slightly perturbed, and from a random initial pattern,
respectively . Although these patterns appear complex,
eventually both decay to simple periodic behavior . Thus
the observed complexity is only a transient . The surprising
result is that for this very simple system the length of the
transients grows hyper-exponentially with increasing sys-
tem size [111 . This is somewhat disturbing since one would
have to wait, for the examples shown here, many universe
lifetimes to observe the system's attractor . This is a clear
example of spatio-temporal complexity that is not de-
scribed by a chaotic attractor .

VII .

	

LOGARITHMIC SPIRALS AND PHYLLOTAXIS

A common large-scale symmetry found in video feed-
back patterns is the logarithmic spiral illustrated by Photo
19 . This is a natural consequence of camera rotation and
optical demagnification . On each circuit of the feedback
loop the image is rotated and reduced in size, leading to a
sea-shell-like self-similarity .

Biological patterns appear in other regimes as well .
Photos 20 and 21 show "crystalline" lattices of stable,
isolated dots . In the first the dots at the center fall into a
phyllotaxic symmetry. Phyllotaxis refers to the arrange-

ment of leaves on a stem or florets in a composite flower,
such as a sunflower, along logarithmic spirals. The second
photo (21) illustrates a more complex lattice with domains
of simple symmetries separated by walls.

VIII .

	

OPEN FLOWS AND THE SPATIAL
AMPLIFICATION OF FLUCTUATIONS
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There is a wide class of physical phenomena in which
material transport through a system leads to the spatial
magnification of small fluctuations . This in turn results in
complex macroscopic structure downstream. Open flows,
such as pipe flow, are the most well-known examples of
this [14] . The structures formed downstream, such as vortex
streets or turbulent plugs, are supported in a sense only by
the fluctuations : the ideal noiseless systems admit regular
flows.
This class of systems is easily studied with video feed-

back by simply offsetting the camera and monitor centers.
With the camera unrotated and offset upwards, for exam-
ple, successive images are seen displaced downwards
the monitor. When nonlinear electronic processing is ad
ed and the local dynamics becomes unstable small fluctua-
tions at the screen top are magnified and propagate down
the screen . Photos 22, 23, and 24 show a "waterfall" where
perturbations propagate down the screen . The first photo
22 shows the initial development from a small fluctuation
on the photo's right side . The second (23) and third (24)
photos show its growth and propagation downscreen .

Photos 25 and 26 illustrate another example of how
small fluctuations are filtered into manifesting themselves
as structured macroscopic patterns. In this situation noise
drives relaxation-type oscillations . Here large spatial mag-
nification and light gain make the video system sensitive to
small fluctuations . If of sufficient size, the fluctuations are
amplified and filtered spatially and temporally to macro-
scopic observable patterns . Typically, only a few "amplifi-
cation" pathways are seen ; two of which are shown in the
photos .

IX . BIFURCATIONS

The foregoing survey has concentrated on the wealth of
pattern dynamics arising at particular control settings .
Video feedback, much like any analog computer, does not
reveal its unique benefits as a real-time investigative tool
until one realizes all this phenomenology can be interac-
tively changed and the results immediately seen . This leads
to the study of bifurcations through which qualitative
changes in the dynamics occur with the smooth variation
of control parameters .

9.1 . Symmetry Locking and Chaos

The majority of patterns seen so far have exhibited
azimuthal symmetry which has been imposed on the image
by camera rotation . The ninefold symmetry seen in the
video dislocation photos corresponds to a camera rotation
of 40 degrees. The effect camera rotation has on behavior
can be studied in isolation in the following way. First, the
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relaxes onto a period two limit cycle (44) . Photo 45 shows
a two "band" chaotic attractor later in the bifurcation
sequence.

Finally, with constant illumination, rather than a brief
initial burst of light, the basin of attraction can be investi-
gated. Photo 46 demonstrates the basin for a simple period
2 limit cycle.

XI.

	

NONLINEAR IMAGE PROCESSING

This survey has given only a brief introduction to the
contemporary study of spatially extended nonlinear dy-
namical systems. In this endeavor, video feedback is seen
to be a flexible, high-speed simulator, on the one hand,
and a source of diverse spatio-temporal experimental data,
on the other. The survey has not described many other
types of complex behavior, such as, how video feedback
can be used to implement neural networks, spin glasses,
and multiple-species chemical reactions . Space has also not
allowed for a discussion of the theoretical relationship
between information and dynamical systems theories that
are so important in the analysis of this complexity [171 . We
will close with a discussion of the relationship of this work
to future directions in nonlinear image processing.
Some similarities with image processing systems are

clear from the mathematical formulation of the models
and from the video apparatus. The systems we have studied
here are nonlinear iterative image processing systems. The
diversity of behavior seen in video feedback indicates that
incorporating both nonlinearity and iteration will lead to
many new image processing techniques and to a broader
theoretical framework for image processing based on dy-
namical systems theory. From the point of view of dy-
namical systems, image processing tasks suggest questions
of how to design the attractors and basin structures of
spatially extended dynamical systems to perform specific
computation and image processing tasks and how to do
these efficiently.
From a slightly different perspective, video feedback as

presented here is an experimental exploration of the poten-
tials of optical computing. The camera-monitor system is
employed essentially as an image operational amplifier. As
far as the methodology and the phenomena'are concerned
any technology could be used for this function . To date
there appear to be no reasonable alternative optical op
amps . If such an instrumentation-quality device were to
become available, especially one that was truly parallel in
operation then, for the investigation of two- and higher
dimensional spatial dynamics, feedback optical computing
would vastly outstrip digital computers of any architecture
in speed and ease-of-use . The potential impact on the
simulation of very complex scientific problems is hard to
overestimate . Even with current video technology substan-
tial progress along these lines could be made . The manu-
facturers of broadcast quality and high definition televi-
sion (HDTV) video equipment are in unique positions to
establish laboratories for video feedback investigations of
nonlinear spatially extended dynamics.

It is somewhat sobering to realize that the diversity of
phenomena presented here could have been as easily in-
vestigated thirty years ago as now. The basic technology
for video feedback has been available since the 1950's . If
history is any indication, then, the alternative approach
advocated here may be a route not taken. Despite their
potential for scientific simulation, video feedback and re-
lated image processing techniques could very well continue
to be eclipsed by expensive multiple-processor su-
percomputers . The resurgence in interest in optical
computing, in distributed processing, and in parallel com-
putational architectures, however, are hopeful signs that
interactive, high-speed machines for the experimental
mathematical investigation of complexity may be widely
available in the next decade . The next few years will tell if
image processing and video feedback contribute directly to
this line of technological development.

This work has benefited greatly from the expertise of
Donald Day of the California College of Arts and Crafts .
The two-dimensional mapping work was done in CCAC's
Video Department .

J. Gleick, Chaos, Making a New Science . New York : Viking,
1987 .
P . Berge, Y . Pomeau, and C . Vidal, Order within Chaos : Towards a
Deterministic Approach to Turbulence .

	

New York : Wiley, 1984.
J. P . Crutchfield, N . H . Packard, J. D . Farmer, and R. S . Shaw,
"Chaos," Sci . Am . 255, vol . 46, Dec . 1986 .
D. Campbell, J. P . Crutchfield, J . D. Farmer, and E. Jen, "Experi-
mental mathematics : The role of computation in nonlinear studies,"
Comm . ACM, vol . 28, p. 374, 1985 .
J . P. Crutchfield, "Space-time dynamics in video feedback," Physica
vol . 10D, p . 229, 1984 .
J . P. Crutchfield and K. Kaneko, "Phenomenology of spatio-tem-
poral chaos" in Directions in Chaos, (Hao Bai-Lin, Ed.) Singa-
pore : World Scientific Publishers, 1987 .
J . P. Crutchfield, Space-Time Dynamics in Video Feedback and
Chaotic Attractors of Driven Oscillators, video tape, Aerial Press,
P.O. Box 1360, Santa Cruz, CA 95064, 1984 .

[8] Pixel processing was performed by an analog image processor
designed by Dan Sandin of the University of Illinois, Chicago
Circle, and by a max video digital image processor manufactured
by Datacube, Inc . (Peabody, MA) .
For this we have used a Rutt-Etra Video Synthesizer . While these
are no longer manufactured, modem digital video effects machines
do incorporate similar raster manipulation functions . Quantel's
Mirage, Ampex's ADO, and the more recent Sony Real-Time
Texture-Mapping System are examples . For the latter see M. Oka,
K. Tsutsui, A. Ohba, Y. Kurauchi, and T. Tago, "Real-time mani-
pulation of texture-mapped surfaces," Comp. Graphics, vol . 21, 181,
1987 .

[10]

	

A. M. Turing, "The chemical basis of morphogenesis," Trans . Roy.
Soc ., Series B, vol. 237, p . 5, 1952 .

[111 J . Crutchfield and K. Kaneko, "Are attractors relevant to turbu-
lence?," submitted to Phys . Rev . Lett ., 1988.

[121

	

For this and other examples, see A . T. Winfree, The Geometry of
Biological Time,

	

Berlin : Springer-Verlag, 1980.
[13] cf . K . I . Agladze and V . I . Krinsky, "Multi-armed vortices in an

active chemical medium," Nature, vol . 296, p . 242, 1982 .
[14]

	

D. J. Tritton, Physical Fluid Dynamics,

	

New York : Van Nostrand
Reinhold, 1977 .

[151 A. J. Lieberman and M . A . Lichtenberg, Regular and Stochastic
Motion .

	

New York : Springer-Verlag, 1983 .
[16]

	

R. Lozi, J . Phys., vol. 39, C5-9, 1978.
[17]

	

J. P. Crutchfield and B . S . McNamara, "Equations of motion from
a data series," Complex Systems, vol, 1, p . 417, 1987 .

[1]

[2]

[3]

[41

[5]

[6]

ACKNOWLEDGMENT

REFERENCES

775



776

Photo 1.

	

Afixed point attractor .

Photo 3 .

	

Asnapshot at a later time ; the central region has grown.

Photo 5. Chaotic attractor in a symmetry-locking regime : a snapshot
when the state is near a fourfold symmetric pattern.
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Photo 2.

	

Snapshot of a limit cycle attractor .

Photo 4. A snapshot of the limit cycle attractor as the state collapses
back to a uniform pattern.

Photo 6.

	

Transit from a four- to twenty-one-fold symmetric pattern .

Photo 7.

	

Another intermediate state in the transition .

	

Photo 8.

	

Near the twenty-one-fold symmetric, unstable fixed point
pattern.
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Photo 9.

	

Snapshot of a gas of video dislocations .

Photo 11 . Numerical model of
dislocations : 20 steps after starting
from a random initial pattern.

Photo 14 .

	

One-armed spiral wave.

Photo 12. At 200 time steps do-
mains of parallel fingers appear.

Photo 15 .

	

Two-armed spiral wave .

Photo 13 . At 1100 steps the do-
mains have increased in size and
begin to organize into concentric
rings .

Photo 16 .

	

Three-armed spiral wave .
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Photo 10 .

	

Dislocations are created at the center and move out into the
laminar region where they are annihilated.

Photo 17 .

	

Transient spatial chaos 310 steps after a single-site perturbed

	

Photo 18.

	

Transient spatial chaos 492 steps after a random initial
initial pattern .

	

pattern .



Photo 21 . Crystalline dot-lattice with locally symmetric domains sep-
arated by walls .

Photo 23 .

	

Growth of a small perturbation at the photo's right side.
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Photo 19.

	

Logarithmic spiral .

	

Photo 20 .

	

Phyllotaxic symmetry in a crystalline dot-lattice .

Photo 22.

	

Spatial amplification of fluctuations in a video waterfall .

WNW

Photo 24 .

	

Downscreen propagation of the now macroscopic structure.

Photo 25 .

	

One amplification pathway for a noise-driven relaxation oscil-

	

Photo 26 .

	

Another amplification pathway for the same oscillator.
lator
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Photo 27 .

	

Symmetry-locking bifurca-
tion : counterclockwise rotating, five-
fold symmtric pattern.

Photo 30 .

	

Instability at the bifurcation to thirteenfold symmetry.

Photo 32 .

	

Below the transition to video turbulence : a stable fixed point
pattern.

Photo 34.

	

Spatial coherence is lost at higher nonlinearity : fully devel-
oped video turbulence sets in .

Photo 28 . At slightly increased
camera angle: a stationary fivefold
pattern.

Photo 29. The fivefold pattern be-
gins to move clockwise at increased
angle.

Photo 31 .

	

Thethirteenfold, stable fixed point pattern .

Photo 33 .

	

At the transition to turbulence.
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Photo 36 .

	

Chaotic attractor in two dimensions.

Photo 39 .

	

Initial stage of a relaxation to a
period-four limit cycle.

Photo 42 . The period-doubling bifurcation
to chaos starts at a fixed point .

Photo 45 .

	

A two-band chaotic attractor later in the bifurcation
sequence.

Photo 40.

	

Later in the relaxation process.

Photo 43 . The fixed-point looses stability
and the system relaxes onto a stable period
two limit cycle .
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Photo 37 .

	

Transients flow along a stable

	

Photo 38.

	

Piecewise-linear chaotic attractor .manifold

	

exhibiting ` homoclinic

	

tangle"
structure .

Photo 41 . Relaxation almost complete : the
points on the period-four limit cycle are
discernible.

Photo 46 .

	

Basin of attraction for period-two limit cycle .


