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Video feedback provides a readily available experimental system to study complex spatial and temporal dynamics . This
article outlines the use and modeling of video feedback systems. It includes a discussion of video physics and proposes two
models for video feedback dynamics based on a discrete-time iterated functional equation and on a reaction-diffusion partial
differential equation . Color photographs illustrate results from actual video experiments . Digital computer simulations of the
models reproduce the basic spatio-temporal dynamics found in the experiments.

1. In the beginning there was feedback

Video technology moves visual information
from here to there, from camera to TV monitor.
What happens, though, if a video camera looks at
its monitor? The information no longer goes from
here to there, but rather round and round the
camera-monitor loop . That is video feedback .
From this dynamical flow of information some
truly startling and beautiful images emerge .

In a very real sense, a video feedback system is
a space-time simulator. My intention here is to
discuss just what is simulated and I will be implic-
itly arguing that video feedback is a space-time
analog computer. To study the dynamics of this
simulator is also to begin to understand a number
of other problems in dynamical systems theory [1],
iterative image processing [2], cellular automata,
and biological morphogenesis, for example. Its
ready availability, relative low cost, and fast
space-time simulation, make video feedback an
almost ideal test bed upon which to develop and
extend our appreciation of spatial complexity and
dynamical behavior .

Simulation machines have played a very im-
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portant role in our current understanding of dy-
namical behavior [3] . For example, electronic
analog computers in their heyday were used exten-
sively to simulate complex behavior that could not
be readily calculated by hand . They consist of
function modules (integrators, adders, and multi-
pliers) patched together to form electronic feed-
back networks . An analog computer is set up so
that the vdltages in different portions of its cir-
cuitry evolve analogously to real physical variables.
With them one can study the response and dynam-
ics of a system without actually building or, per-
haps, destroying it . Electronic analog computers
were the essential simulation machines, but they
only allow for the simultaneous computation of a
relatively few system variables. In contrast, video
feedback -processes entire images, and does so
rapidly. This would require an analog computer of
extremely large size . Video systems, however, are
not as easily broken down into simple function
modules. But it is clear they do simulate some sort
of rich dynamical behavior . It now seems appropri-
ate that video feedback take its proper place in the
larger endeavor of understanding complex spatial
and temporal dynamics .

Cellular automata are the simplest models avail-
able for this type of complexity . Their study,
however, requires rapid simulation and the ability



EIGENWELT DER APPARATEWELT

to alter their governing rules . Video feedback does,
in fact, simulate some two-dimensional automata
and rapidly, too . With a few additions to the basic
system, it can easily simulate other rules . Thus
video feedback has the potential to be a very fast
and flexible two-dimensional automata simulator .
The dynamics of cellular automata are governed
by local rules, but video feedback also allows for
the simulation of nonlocal automata . At the end, I
will come back to these possibilities and describe
how simulations of cellular automata, and their
generalization to nonlinear lattice dynamical sys-
tems, can be implemented with video feedback .

This is largely an experimental report on the
dynamics of a physical system, if you like, or a
simulation machine, called video feedback . My
intention is to make the reader aware of the
fascinating behavior exhibited by this system . In
order to present the results, however, section 2
includes the necessary background on the physics
of video systems and a very straightforward de-
scription of how to start experimenting . An im-
portant theme here is that the dynamics can be
described to a certain extent using dynamical sys-
tems theory . Section 3 develops those ideas and
proposes both discrete and continuous models of
video feedback dynamics . The experimental re-
sults, then, take the form in section 4 of an
overview of a particular video feedback system's
behavior and several snapshots from a video tape
illustrate a little bit of the dynamical complexity.

2 . Video hardware

In all feedback systems, video or other, some
portion of the output signal is used as input . In the
simplest video system feedback is accomplished
optically by pointing the camera at the monitor, as
shown in fig . 1 . The camera converts the optical
image on the monitor into an electronic signal that
is then converted by the monitor into an image on
its screen . This image is then electronically con-
verted and again displayed on the monitor, and so
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Fig. 1 . Single video feedback . Information flows counter-
clockwise through the electronic and optical pathways .

on ad infinitum . The information thus flows in a
single direction around the feedback loop . In fig . 1
the image information flows in a counterclockwise
loop . This information is successively encoded
electronically, then optically, as it circulates .
Each portion of the loop transforms the signal

according to its characteristics . The camera, for
example, breaks the continuous-time optical signal
into a discrete set of rasters thirty times a second .
(See fig. 2 .) Within each raster it spatially dissects
the incoming picture into a number of horizontal
scan lines . It then superimposes synchronizing
pulses to the electronic signal representing the
intensity variation along each scan line . This com-
posite signal drives the monitor's electron beam to
trace out in synchrony the raster on its phosphor
screen and so the image is recontructed . The lens
controls the amount of light, degree of spatial
magnification, and focus, of the image presented to
the camera .
Although there are many possible variations, in

simple video feedback systems there are only a few
easily manipulated controls. (See table 1.)
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Fig. 2. Video raster with arrows indicating the direction of
scanning . Solid lines correspond to when the electron beam is
on ; the dashed lines when the beam is off during the retrace
time . (b) Since the raster defines the horizontal, in a feedback
system the relative orientation as shown of the camera and
monitor is an important control parameter.

The optical controls provide gross spatial trans-
formations ofthe image seen by the camera . Zoom,
available on most modern color cameras, con-
veniently allows for spatial magnification or
demagnification . The same effect can be produced
using a camera without a zoom lens by moving it
closer to or further from the monitor . Focus con-

Table I
Typical control parameters on color video feedback

Name

	

Function

Electronic
Camera

light level
luminance inversion

Monitor
brightness
contrast
color
hue

spatial magnification
image clarity
attenuates incident light level
relative angle of monitor
and camera rasters
relative position of monitor
and camera raster centers

trols image sharpness by moving the focal plane in
front or behind the camera tube's image target .
The total amount of light admitted to the camera
is set by the f/stop or iris control . When pointing
the camera at the monitor the relative position, or
translation, of the raster centers and the relative
angle, or rotation, (fig . 2b) are important controls .

Electronic transformation of the signal occurs in
both the camera and the monitor . The sensitivity
of the camera's tube is adjusted by a light level
control . Some cameras also provide for luminance
inversion that inverts the intensity of the color
signals . When switched on, this allows one, for
example, to view a color negative print with the
camera as it would appear in a positive print . The
image intensity can be adjusted again on the
monitor with the brightness. The contrast controls
the dynamic range of the AC portion of the
intensity signal . On color monitors the amount of
color in the image is set by the color control and
the relative proportion of the primary colors
(red-green-blue) is governed by the hue.

While the effect of each individual adjustment
can be simply explained, taken together they
present a formidable number of control variables

adjust sensitivity of camera pickup tube
inverts intensity signal for each color

varies overall intensity signal
amplifies dynamic range of intensity
attenuates color signals to black and white
relative signal strength of colors
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that can interact nontrivially . These problems will
be considered in greater detail in the ensuing
discussion of TV theory and possible mathematical
models of feedback dynamics . This section now
ends with a "cookbook" procedure for setting up
a feedback system .
Although the detailed and quantitative dynam-

ics will vary with the specific equipment used, my
experience indicates that almost all servicable cam-
eras and monitors will give some interesting behav-
ior . This may require some patience as there are a
number of controls to be properly set . But once
"tuned up" a system will exhibit complex and
striking imagery in a reasonably wide control
range . For the movie [4] and pictures described
later the camera used was a Sony Trinicon HVC-
2200 and a Sony Trinitron TV/Monitor KV-1913* .
A typical start-up procedure might be as follows :
1) Connect equipment as shown in fig. 1 .
2) Place camera five to six feet from monitor .

The distance will depend on the monitor screen size
and is not that important if the camera has a zoom
lens.

3) Point camera at some object other than the
monitor . Adjust camera and monitor controls to
give a good image on the monitor. Vary these
controls to get a feeling for their effect on the
image .

4) Now turn the camera to face the monitor.
5) Again adjust the camera controls, especially

the zoom and focus, noting their effect . A warning
is necessary at this point : it is not a good idea to
let the camera see any steady very bright image for
more than 10 to 20 seconds** . Bright, dynamic
moving images are generally OK.

6)

	

Adjust camera on its tripod so that it can be
tilted about its optical axis .

7) Point the camera again at the monitor, focus

* The cost for this space-time simulator is a little over $1000,
approximately a cheap home computer.

	

.
** Some new cameras incorporate "burn proof" camera

tubes. Theyare much less susceptible than earliercameras to the
image "burn" that can permanently damage the tubes. Can -
tion should still be exercised . Excessively bright images will
shorten tube life .
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on the monitor front, and zoom in enough so that
the "first" image of the monitor front fills 90% of
the screen .

8) Slowly tilt the camera trying to maintain the
camera point at the screen's center . On almost all
tripods this will take some fiddling and read-
justment . Try zooming in at various rotation an-
gles between 20 and 60 degrees .

Another important element in this is the am-
bient light level . Some behavior is quite sensitive
to, or will not appear at all if, there is any external,
source of light . Although, a flashlight, candle, or a
quick flip of the light switch, can be good light
sources to get the system oscillating again if the
screen goes dark .
With this short description and a modicum of

patience the experimenter has a good chance of
finding a wealth ofcomplex and fascinating spatial
and temporal dynamics .

3. Toward a qualitative dynamics

In the beginning, I argued that a video feedback
system is a space-time simulator . But a simulator
of what exactly? This section attempts to answer
this question as concretely as possible at this time .
A very useful tool in this is the mathematical
theory of dynamical systems . It provides a consis-
tent language for describing complex temporal
behavior . Video feedback dynamics, though, is
interesting not only for the time-dependent behav-
ior but also for its complex spatial patterns . In the
following section I will come back to the question
of whether current dynamical systems theory is
adequate for the rich spatio-temporal behavior
found in video feedback .

This section introduces the qualitative language
of dynamical systems [5], and then develops a set
of discrete-time models for video feedback based
on the physics of video systems . At the section's
end I propose a continuum model akin to the
reaction-diffusion equations used to model chem-
ical dynamics and biological morphogenesis .



Dynamic, time-dependent behavior is best de-
scribed in a state space . A particular configuration,
or state, of a system corresponds to a point in this
space. The system's temporal evolution then be-
comes the motion of an orbit or trajectory through
a sequence of points in the state space . The dy-
namic is the collection of rules that specify the
evolution from each point to the next in time . In
many cases these rules can be simply summarized
as transformations of the state space to itself by
iterated mappings or by differential equations .
As will be seen shortly, video feedback is a

dissipative dynamical system . This means that on
the average "volumes" in the state space contract,
or in physical terms, that energy flows through the
system and is lost to microscopic degrees of free-
dom . This property limits the range of possible
behavior . Starting from many different initial
states, after a long time the system's evolution will
occupy a relatively small region of the state space,
this is the system's attractor* . An attractor is
globally stable in the sense that the system will
return if perturbed off the attactor. Different initial
conditions, even states very near each other, can
end up on different attractors . The set of points,
though, that go to a given attractor are in its basin
of attraction . The picture for a particular dynam-
ical system is that its state space is partitioned into
one or many basins of attraction, perhaps in-
timately intertwined, each with its own attractor .
Very roughly there are three flavors of attractor .

The simplest is the fixed point attractor . It is the
analog to the physicist's notion of equilibrium :
starting at various initial states a system asymp-
totically approaches the same single state . .The next
attractor in a hierarchy of complexity is the limit
cycle or stable oscillation . In the state space this is
a sequence of states that is visited periodically .

* Unbounded or divergent behavior can be interpreted as an
attractor at infinity.

** For simplicity's sake, I have not included the predictable
torus attractor. It is essentially the composition of periodic limit
cycle attractors.
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The behavior described by a fixed point or a
limit cycle is predictable : knowledge of the system's
state determines its future . The last type** of
attractor, that is in fact a very broad and rich class,
gives rise to unpredictable behavior . These are the
chaotic attractors . While globally stable, they con-
tain local instabilities that amplify noise, for exam-
ple . They also have extremely complex orbit struc-
ture composed of unstable periodic orbits and
aperiodic orbits .
An important branch of dynamical systems the-

ory concerns how one attractor changes to an-
other, or disappears altogether, with the variation
ofsome control parameter. The motivation for this
line ofinquiry is clearly to model experimentalists's
control over their apparatus . A bifurcation occurs
when an attractor changes qualitatively with the
smooth variation of control parameter . Changing
controls corresponds to moving along a sequence
of different dynamical systems . In the space of all
dynamical systems, the sequences appear as arcs
punctuated by particular control settings at which
bifurcations occur. It is now known that these
punctuations can be quite complex : continuous
arcs themselves or even Cantor sets or fractals . The
physical interpretation of these possibilities is very
complex sequences of bifurcations . Thus dynam-
ical systems theory leads us to expect not only
unpredictable behavior at fixed parameters, but
complex changes between those chaotic attractors .
With modifications much of this qualitative pic-

ture can be carried over to the dynamics of video
feedback . It is especially useful for describing the
context in which the complex behavior arises . In
the following I also will point out possible inade-
quacies of the naive application of dynamical
systems .
A single state of a video feedback system corre-

sponds to an entire image, on the monitor's screen,
say . The state is specified not by a small set of
numbers, but rather a function I(z) ; the intensity
at points z on the screen . The dynamics of video
feedback transforms one image into another each
raster time . The domain of the intensity function
I(z) is the bounded plane, whereas the domain of
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the dynamics is the space of functions or, simply,
the space of images .
This picture can be conveniently summarized by

introducing some notation . The monitor screen is
the bounded plane Rz = [ - 1, 1] x [ - 1, 1] where
the coordinates of a point x take values in the
range [ - 1, 1] . With this convention the center of
the screen is (0, 0). For the incoherent light ofvideo
feedback, there is no phase information and so
intensity is all that is significant . The appropriate
mathematical description of an image's intensity
distribution is the space of positive-valued func-
tions . We will denote the space of all possible
images by J~' . The video feedback dynamic then is
a transformation T that takes elements I in 3,~' to
other elements : T : .~->J57 : IF-+I' .

The task of modeling video feedback is now to
write down the explicit form of T using our
knowledge of video system physics . To simplify
matters, I will first develop models for mono-
chrome (black and white) video feedback . With

color systems the modeling is complicated by the
existence of three color signals and the particular
camera technology . Once the monochrome model
is outlined, however, it is not difficult to make the
step to color .
The construction of the monochrome model

requires more detailed discussion of the electronic
and optical transformations in the feedback loop .
Fig . 3 presents the schematic upon which this
model is based . With the physics of these trans-
formations as discussed in the appendix, a rela-
tively complete model can be constructed .
The appendix reviews the operation of the com-

mon vidicon camera tube, how it (i) stores and
integrates images and (ii) introduces a diffusive
coupling between picture elements . These attri-
butes impose upper temporal and spatial frequency
cutoffs, respectively . The focus turns out to be an
easily manipulated control of the spatial diffusion
rate . The monitor's phosphor screen also stores an
image but for a time negligible compared to that

tea I
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Fig. 3 . Idealized monochrome video feedback . A: photoconductive image target ; B: pickup for video signal ; C: camera electron beam;
D: scanning coils for electron beams; E: phosphor screen; F: beam intensity modulator; G: monitor electron beam .



of the vidicon . The appendix indicates various
deviations from the ideal video feedback system of
fig . 3 .
With the physics and electronics of video sys-

tems in mind, the details of the transformation T
can be elucidated for the monochrome model . The
first and perhaps most significant assumption, is
that T be taken as a discrete-time transformation
of a spatially continuous function, the image In ,

Employing a "bias intensity", the intensity at a
point I�(x) can be scaled to take values in the range
[ - l, 1] ; -1 being black and 1 white . For com-
parison at the end of this section, I consider how
a continuous time and space model can be applied
to video feedback using reaction-diffusion equa-
tions .
The new image I� + , consists of two parts : the

first, the "old image" stored in the photo-
conductor, and the second, the "incoming image"
from the monitor screen . This, and the process of
successive feedback of images, can be expressed as
an iterated functional equation . The first model of
the dynamic T is the following

I� +,(x) = LI�(x) +sfh(bRx) ,

	

(1)

where z is a point in Rz . The first term represents
the old image whose intensity at the point z has
decayed by a factor ofL each time step . Thus L is
the intensity dissipation of the storage elements,
including the monitor phosphor, but dominated by
the photoconductor . The second term represents
the incoming image that is possibly rotated by an
angle 0 and spatially magnified by a factor b. R is
then a simple rotation,

_ cos(O) sin(O)
R
- (-sin(O)

	

cos(¢))'

due to the relative raster orientations ; b corre-
sponds to the zoom control . If z' = hRx lies out-
side of Rz then h(9') = 0 . The parameter fE[0, 1]

corresponds to the f/stop . For a system with
luminance inversion black regions become white
and vice versa . -To take this into account the
parameter s is set to -1, rather than its normal
value of unity .

Spatial diffusion due to the photoconductor, but
largely controlled by focus, contributes to the
intensity at a point . It produces a spatial coupling
to neighboring pixels that can be represenied con-
tinuously by the following convolution integral :

(~

	

_xz
(In(x))x=

J dYln(Y)exp(-ly

	

I2(vf + av)z)
R2
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assuming a Gaussian shape for the diffusion
profile . The denominator in the exponential con-
trols the width of the smoothing with af represent-
ing the focus control and a, the intrinsic smoothing
in the vidicon .
A more complete model including the major

features of video feedback systems is the following :

I+,(z) = LI�(_z) + L'(h(x)~x + sf7�(bRz) ,

	

(3)

with the parameter L' setting the magnitude of the
intensity signal contributed (or leaked) to that at x
during one raster time .

Furthermore, the first term in eq . (3) can be
modified to include the temporal storage and inte-
gration of images and their successive decay . This
can be effected by a weighted sum of past images,

where the decay parameter L is the same as above .
This gives equations corresponding to the video
feedback system as laid out in fig . 3,

h+ (z)=L(h(x))*+L'(In(x)>x+sfl�(bRz) . (4)

For a color system the scalar intensity becomes
a vector of red, green, and blue intensities,
i(g) = (R(-fl, G(x), B(z)).

	

There are also cou-
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plings between the colors caused by a number of
interactions and imperfections, such as

1) incorrect convergence of the monitor electron
beams on the screen phosphor color dots ;

2) non-ideal color filters and differential
diffusion rates for the photoelectrons in the vid-
icon ;

3) aberration in the optical system ;
4) electronic cross-talk between the color signals

in pickup, amplification, and reconstruction, of the
image .
A model for color feedback can be developed as

an extension of eq . (4) based on the evolution of
a vector intensity I,

In+,(X> = L~h(x))t + L'~In(z)>x + srr�(bnx) , (5)

where L and L' are matrices . Their diagonal
elements control the color intensity decay, while
their offdiagonal elements the coupling of the
color signals . In a first order approximation, this
model summarizes the various couplings only lin-
early although it is clear that nonlinear couplings
could be added .
Along the same lines a continuous-time model

can be developed that for many purposes is easier
to study . This also allows for the comparison of
video dynamics to other work on spatial complex-
ity in biological and chemical systems . The type of
model proposed here is generally called a
reaction-diffusion partial differential equation.
A.M . Turing introduced this kind of system in
1952 as a model for biological morphogenesis [6] .
The general form of these equations is

dl F(I
I
-

	

) +DP ZI (6)

for the evolution of the "field" I = (I,, IZ, . . . , Ik)
of concentration variables . The function
F = (F,, FZ, . . . , Fk) represents the local "reaction"
dynamics of these variables without diffusion . D is
a matrix describing the spatial coupling and
diffusion rate of the concentration variables . For
linear F, Turing showed that this system gives rise
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to spatial patterns that can oscillate temporally . He
also considered the addition of a noise term and its
effect on the selection of spatial patterns.

These equations naturally take into account
spatial diffusion with the Laplacian operator on
the RHS of eq. (6) . Furthermore, the continuous
time derivative and the local reaction dynamics can
be used to implement a temporal low pass filter .
Thus . reaction-diffusion models can be construc-
ted that satisfy the basic criteria already laid down
for video feedback . Video feedback differs from
Turing's reaction-diffusion models because of a
nonlocal spatial coupling resulting from the spatial
rotation and magnification . In direct analogy with
the previous arguments, the proposed reaction-
diffusion equation for color video feedback dy-
namics is

di'(x)
=LI(z)+sfl(bAX)+QPZI(z),

dt

where the parameters s, f, b, L, and R, are as
before, and a is a matrix summarizing the spatial
diffusion rate . The first term on the RHS of eq. (7)
is the "old image", the next term is the nonlocal
"incoming image", and the last is the diffusion
coupling . For spatial structure and temporal be-
havior well below the spatial and temporal fre-
quency cutoffs discussed above, this model should
be valid . As will be seen in the next section,
video feedback dynamics has very similar phenom-
enology to that of chemical and biological systems
described by this type of model . The
reaction-diffusion model provides a conceptual
simplicity as well as simpler notation . In fact, video
feedback can be used to experimentally study
this widely used class of models for spatio-
temporal complexity.
The previous iterated functional equation model

eq . (4) can be derived from eq . (7) upon dis-
cretization . Eq . (7) is the differential form of eq.
(4), an integro-functional difference equation. A
digital computer simulation of this continuum
model naturally involves spatial and temporal dis-
cretization . Thus, as far as verifying the models by



digital simulation, it is a moot point as to which is
better, the iterated functional equation or
reaction-diffusion model.
Having constructed these models, the burning

question is whether their dynamics describe that
actually found in real video feedback systems . For
the very simplest behavior there is hope that the
equations can be solved analytically . In general,
though, simulating the models in a more controlled
environment on a digital computer, for example,
seems to be the only recourse [7] . After describing
the dynamics typically observed in a real video
feedback system in the next section, I will come
back to the results ofjust such a digital simulation .

4. Video software

The models and discussion of video physics in
the last section may have given an impression of
simplicity and straightforwardness in under-
standing video feedback dynamics. The intent in
this section is to balance this with a little bit of the
richness found in an actual color video system . An
overview of the observed dynamics will be
presented initially from a dynamical systems view-
point. I will also address the appropriateness of

Table II
Video feedback dynamics

Observed

equilibrium image
temporally repeating images
temporally aperiodic images
random relaxation oscillation

spatially decorrelated dynamics
(e.g . dislocations)

spatially complex image

spatially and temporally aperiodic
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this framework for some of the more complex
dynamics. Then a brief description of a movie on
video feedback follows. Stills from the movie illus-
trate some of the curious features of video feed-
back dynamics . And finally, these "experimental"
results will be compared to those from preliminary
digital computer simulations.

Video feedback dynamics can be roughly catego-
rized as in table II . For the simplest temporal
behavior, descriptive terms from dynamical sys-
tems seem appropriate as in the first four behavior
types. At first, let's ignore any possible spatial
structure in the images . When a stable time-
independent image is observed, it corresponds to a
fixed point in the image space F. Much of the
behavior seen for wide ranges of control parame-
ters falls into this category .
Thus on the large scale video systems are very

stable, as they should be in order to operate
properly in a wide range of environments . For
extreme parameter settings, such as small rotation,
low contrast, large demagnification, and so on,
equilibrium images are typically observed . For
example, when the zoom is much less than unity
then one observes an infinite regression of succes-
sively smaller images of the monitor within the
monitor within . . . . The image is similar to that

Attractor in image space

fixed point
limit cycle
chaotic attractor
limit cycle with

noise-modulated stability
quasi-attractor with
local temporal dynamics :

fixed point
limit cycle
chaotic attractor

spatial attractor :
fixed point
limit cycle
chaotic attractor (?j

nontrivial combination of
the above
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seen when two mirrors face each other . With a bit
of rotation the infinitely regressing image takes on
an overall "logarithmic spiral" shape that winds
into the origin .
When the parameters are set to moderate values,

one of the first non-trivial dynamics to appear is a
simple oscillation . This would be a limit cycle in
image space : a sequence of dissimilar images that
after some time repeats . Because entire images
repeat, individual points on the screen exhibit
periodic behavior . Consequently, the values of
intensity at a point cycle repetitively.
At parameter values nearby often lie temporally

aperiodic image sequences . Chaotic attractors in
image space are most likely a good description of
this behavior type in the simplest cases* . When
non-repeating images are reached from limit cycles
with the change of a parameter, the bifurcation
occurs in one of (at least) three ways:

1) Simple lengthening of the limit cycle period,
until it is sufficiently long to be effectively aperi-
odic : for example, going from -a limit cycle of 10
seconds to one of hours . New images are intro-
duced, but are not sufficiently similar to be consid-
ered as close "recurrences" .

2) The introduction of subharmonics at fre-
quencies lower than that of the original limit cycle :
these subharmonics are small modulations of the
image's geometric structure . The overall image
sequence remains the same, but differs in the
modulated detail .

3) Suddenly at some critical parameter value,
the limit cycle disappears and aperiodicity set in.
A very telling indication that complex behavior

lies at nearby parameter settings comes from
slightly perturbing the system . This can be done
most conveniently by waving a finger between the
monitor and camera. Once perturbed, the nearby
complexity reveals itself by long and convoluted
transients as the system settles down to its original

* In this case, given atime series of intensity values at a point,
it is possible to "reconstruct" a state space picture of the
attractor [8] .

20 0

simple fixed point or limit cycle . The closer in
parameters to aperiodic behavior, the longer the
transients . The simple dynamics discussed so far
are globally stable in just this sense of returning to
the same image(s) when perturbed . Of course, one
can perturb the system too much, knocking it into
another basin of attraction and so losing the
original behavior . It is a common experience, in
fact, that hand-waving perturbations will leave the
screen dark, with the system requiring a "positive"
stimulus of light from some source to get back to
its initial attractor .
At large zoom, or spatial magnification, the

system noise is readily (and exponentially)
amplified . This regime is dominated by bursts of
light and color . Depending on the controls, the
bursts can come at regular intervals or at random
times . Also, the particular features of the bursts,
such as color, intensity, or even the pattern, can be
the same or aparently randomly selected . This
behavior is quite reminiscent of a limit cycle with
(noise) modulated stability [9] .
The dynamics discussed so far is simple in the

sense that its temporal features are the dominant
aspect . No reference was made to spatial structure
as the temporal dynamics was readily distinguished
from it . A more precise way to make this dis-
tinction is in terms of whether the behavior at a
suitably chosen point captures the dynamics [8] .
Using intensity data from this point, if a simple
attractor can be reconstructed, then the behavior is
of a simple type that can be decomposed into
temporal and spatial components . The last entries
in table 11 are an attempt to indicate that there is
much more than this simple decomposable dynam-
ics . Indeed, the spatial structure and its interaction
with the temporal dynamics are what makes video
feedback different from other systems with com-
plex dynamics, like chaotic nonlit»ar oscillators .
But this difference presents various (intriguing)
difficulties, especially because a dynamcal system
description does not exist for spatial complexity
[10] . Nonetheless, a qualitative description is possi-
ble and, hopefully, will lead to the proper the-
oretical understanding of spatial dynamics .



Much of the following description, and the
categorization used in table II, is based on observed
similarities in spatial structure . While it may be
very difficult to unambiguously state what .a com-
plex image is, we as human beings can easily
discern between two images and can even say some
are "closer" than others in structure . I am not
currently aware, however, of any mathematical
definition of "closeness" for spatial structure that
is of help with the dynamics observed in video
feedback . Such a concept would be of immense
value in sorting out complex dynamics not only in
video feedback but in many other branches of
science .
To denote images that are observed to be simi-

lar, but different in spatial detail, I introduce the
phrase "quasi-attractor" for the associated object
in state space . These state space objects appear to
be globally stable to small perturbations and it is
in this sense that they are attractors . Once per-
turbed, the video system returns to similar images,
although in spatial detail they may be slightly
altered from the original .
A good example of quasi-attractors is the class

of images displaying dislocations . This terminology
is borrowed from fluid dynamics, where dis-
locations refer to the broken structure of con-
vective rolls in an otherwise simple array . Dis-
locations are regions of broken symmetry where
the flow field has a singularity. The formation of
this singularity typically requires a small, but
significant, energy expenditure* . In video feed-
back, dislocations appear as inter-digitated light
and dark stripes . The overall pattern can be com-
posed of regularparallel arrays of alternating light
and dark stripes with no dislocations, and con-
voluted, maze-like regions where stripes break up
into shorter segments with many dislocations . The

Both Couette flow [1l] and Benard convection [12] exhibit
this phenomenon . In nematic liquid crystal flow these are called
disctinations . Similar structures appear in spin systems, such as
magnetic bubble devices, and in the formation of crystals.
Turing's discussion [6] of "dappled patterns" in a two-
dimensional morphogen system is also relevant here .
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boundaries between segment ends form the dis-
locations . They can move regularly or wander
erratically . Dislocations form in pairs when a stripe
breaks in two . They also annihilate by coalescing
two stripes . Dislocations make for very complex,
detailed patterns whose temporal evolution is
difficult to describe in terms of dynamical systems
because of their irregular creation and annihi-
lation . Nonetheless, when perturbed very similar
images reappear . A quasi-attractor would be asso-
ciated with global features, such as the relative
areas of regular stripe arrays and dislocation re-
gions, the time-averaged number of dislocations,
or the pattern's gross symmetry .

Dislocations fall into the behavior class of spa-
tially decorrelated dynamics. Moving away from
one point on the screen, the spatial correlations
decay rapidly enough so that eventually there is no
phase relationship between the behavior of
different regions . The governing dynamics in any
one area is similar to that of other areas . The local
behavior, however, can take on the character of a
fixed point, limit cycle, or chaotic attractor. Thus
while globally stable, the entire image cannot be
described by a single attractor in the conventional
sense of dynamical systems theory . This behavior
type has been studied quantitatively in simple
nonlinear lattice models [13] . Spatially decorrelated
dynamics apparently is the cause of heart
fibrilation that results in sudden cardiac death [14] .
The existence of spatial attractors that describe

an image is another useful notion in classifying
video dynamics . Intensity values as a function of a
"pseudo-time" can be obtained by following along
a simple parametrized curve on the screen . These
values then can be used to reconstruct a "state
space" picture [8] that captures some features ofan
image's structure . These features naturally depend
on the type of curve selected . For example, data
from a circle of fixed radius elucidates the rota-
tional symmetry in an image . Similarly, data from
along a radial line allows one to study radial wave
propagation caused by magnification . The recon-
struction of spatial attractors has been carried out
for the above-mentioned lattice models [13] .
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The rough classification is not yet complete .
There are also image sequences that appear to be
combinations of spatially-decorrelated dynamics
and complex spatial attractors . The latter entries in
table II indicate these possibilities .
The interaction of spatial and temporal dynam-

ics makes it very difficult to describe the more
complex behavior in any concise manner . To alle-
viate this problem a short video tape was prepared
to illustrate the types of behavior in table II [4] .
The movie is particularly effective in giving a sense
ofthe temporal evolution, stability, and richness of
video feedback dynamics . An appreciation of the
spatial complexity can be gleaned in a few stills
from the movie . (See plates 1-7 .) This will com-
pensate hopefully those readers who do not have
access to a video feedback system or who have not
seen the movie .
The examples have a few common features .

Regarding parameter settings, they were all made
at rotations of approximately 40 degrees and with
spatial magnifications slightly less than unity, un-
less otherwise noted . The discreteness caused by
the finite resolution is apparent in each figure . Note
that the spatial structures are typically many pixels
in extent, so that the discreteness does not play a
dominant role .

Plate 1 presents a typical nontrivial equilibrium
image, or fixed point . It has an approximate nine-
fold symmetry that comes from the rotation angle :
360/40 = 9 . The intensity at each point as a func-
tion of angle is periodic, with periods not greater
than nine . The overall spatial symmetry as a
function of rotation 0 exhibits a "symmetry lock-
ing" highly reminiscent of that found in temporal
frequency locking in nonlinear oscillators [3] . One
noteworthy similarity is that the parameter win-
dow for which a given symmetry dominates de-
creases in width with increased order of the sym-
metry . For example, spatially symmetric images of
period 31 occur for a much smaller rotation range
those with period 9 symmetry .

'One evening this cycle was allowed to oscillate for two
hours with no apparent deviation from periodicity before the
power was turned off.
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One image out of a long limit cycle is shown in
plate 2 . The limit cycle period was approximately
7 seconds . Initially, a green disk nucleates at the
center of a homogeneous light blue disk . The green
disk grows to fill 80% of the illuminated area
leaving a blue annulus . A red disk then nucleates
inside the green disk, along with an outside ring of
nine dots . The oscillation consists largely of the
radially outward moving red disk, that Nntercepts
the inward propagating dots . The still is taken at
the moment of collision. The disk expands en-
gulfing the dots and the green annulus, then itself
is over taken by the inside boundary of the blue
annulus that moves inward . The outer boundary of
the red disk then recedes before the blue annulus .
The screen then eventually becomes entirely light
blue, at which moment the center nucleates a
growing green disk, and the cycle repeats . This
limit cycle was stabilized by a very small marking
near the screen's center* .

Plate 3 shows a still from a sequence of images
with slowly moving dislocations . Toward the out-
side there is a "laminar" region of stripes. Moving
inward from this, the first ring of nine dislocations
is encountered . These were seen to move smoothly
counter-clockwise . The center, however, period-
ically ejected thin white annuli that propagated out
radially, only slowly acquiring clockwise rotation .
The interface between the inner and outer regions
caused the intervening maze-like dislocation pat-
tern . The entire image shows a high degree of
nine-fold symmetry although in the dislocation
region it is quite complex .

Spiral patterns are quite abundant, as one ex-
pects from a transformation with rotation and
magnification . Plate 4 illustrates a logarithmic
spiral that dynamically circulates clockwise
outward . Temporally, the behavior is periodic with
color and structure flowing outward from the
center . The rotation here is 0 = - 30 degrees . The
logarithmic spiral can be easily described as a
parametrized curve with angle (k and scaling b
controls as follows

(x, y) = (bt cos(o log t), bt sin(o log t)) ,



with tE[0, 1] . Such structure and periodic coloring
occur often in organisms, such as budding ferns
and conch shells .
With relatively high zoom, or large spatial

magnification greater than unity, noise in intensity
and spatial structure is exponentially amplified . A
common manifestation of this is periodic or ran-
dom bursts . Plate 5 shows a snapshot of a devel-
oped burst that had spiralled counterclockwise out
ofthe center in about one second . After a burst the
screen goes dark with faint flickering, until another
fluctuation occurs of sufficient magnitude to be
amplified into a spiralling burst . The video sys-
tem's finite resolution can be seen as a graininess
on a scale larger than the intrinsic discreteness .
Luminance inversion stabilizes images by ampli-

fying contrast . Black regions map into white and
colors map to their opposite . This sharpens bound-
aries between dark, light, and colored areas in an
image . Section VI ofref. 2 discusses this stabilizing
effect in more detail . Plate 6 shows an example of
the "pinwheels" that dominate the images found
with luminance inversion* . The rotation for this
photo was 0 = -90 degrees . By adjusting the
rotation, focus, and/or hue, controls the pinwheels
are seen to move either clockwise or counter-
clockwise . Winfree discusses similar "rotating
waves" of electrical impulses that cause the heart's
coordinated beating . Plate 6 should be compared
to the figure on page 145 of ref. 14 .

Plate 7, also made with luminance inversion, is
a snapshot of outward spiralling "color waves" .
These are very reminiscent of the ion concentration
waves found in the Belousov-Zhabotinsky chem-
ical reaction [15] . The rotation parameter here is
roughly 0 = -40 degrees . As in the above pin-
wheels, every point in the image has a well-defined
temporal phase, except for the center where there
is a phase singularity .
A digital simulation based on eqs . (4) and (7)

captures some of the gross features of video feed-
back . To this extent the proposed models are

' Bob Lansdon introduced me to these pinwheel images. See
also ref. 2.
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correct . It is still an open question as to whether
they reproduce the detailed spatio-temporal dy-
namics . Such comparison is a difficult proposition
even in modeling temporal chaos alone . Digital
simulations are many orders of magnitude slower
than the space-time analog simulations of video
feedback . And for this reason it is difficult, given
model equations, to verify in detail and at numer-
ous parameter settings their validity . To date digi-
tal simulations [7] have reproduced the following
features typical of video feedback :

1) equilibrium images with spatial symmetry
analogous to Turing's waves [6] ;

2) fixed point images stable under perturbation;
3) meta-stability of fixed point images:

sufficiently large perturbations destroy the image;
4) logarithmic spirals;
5) logarithmic divergence when the rasters are

not centered.
At this preliminary stage of digital simulation it

is not possible to discuss much in detail . In fact, it
may be a long time until extensive digital simu-
lations are carried out on the proposed models .
The construction of, or use of pre-existing, special
purpose digital image processors to simulate video
feedback may be more feasible than using con-
ventional digital computers . The next and final
section comes back to address these questions of
future prospects for understanding video feedback .

.5. Variations on a light theme

Video feedback is a fast and inexpensive way to
perform a certain class of space-time simulations .
It also provides an experimental system with very
rich dynamics that is describable in some
regimes by dynamical systems theory, while , in
other regimes it poses interesting questions about
extending our current descriptive language to spa-
tial complexity .
One goal in studying video feedback is to see

whether it could be used as a simulator for dynam-
ics in other fields . Turing's original proposal of
reaction-diffusion equations for biological mor-
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phogenesis comes to mind, as well as the image
processing [16] and hallucinogenic dynamics [17] of
the visual cortex . Naturally, the first task in this is
to understand video feedback itself as completely
as possible . Toward this immediate end, I have
proposed models based on video physics and
presented an overview of the possible behavior in
a particular color video system . The next steps in
this program are to make a more quantitive study
of the attractors and bifurcations with calibrated
video components . Data from these experiments
would be analyzed using techniques from dynam-
ical systems to (i) reconstruct state space pictures
of the simpler attractors, and (ii) quantify the
unpredictability of the simple aperiodic behavior .
A second approach to understanding video feed-

back dynamics is to study other configurations of
video components . The possibilities include :

1) masking portions of the screen to study the
effect of boundary conditions;

2) optical processing with filters, lenses, mirrors,
and the like ;

3) using magnets to modulate the monitor elec-
tron beam scanning ;

4) connecting two camera-monitor pairs seri-
ally, thus giving twice as many controls ;

5) nonlinear electronic processing of the video
signal;

6) inserting a digital computer into the feedback
loop via a video frame buffer .
The possible modifications are endless . But,

hopefully, they will help point to further under-
standing and lead to applications in other fields .

Variations (5) and (6) may lead to the most
fruitful applications of video feedback . For exam-
ple, they allow one to alter the governing rules in
simulations of two-dimensional local and nonlocal
automata . In this process an image is stored each
raster time . Each pixel and its neighbors are oper-
ated on by some (nonlinear) function . For rapid
("real-time") simulation this function is stored in
a "look-up" table . The pixel value and those ofits
neighbors form the input to the table . The table's
result then becomes the pixel's new value that is
stored and displayed . This is a very general
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configuration . With video feedback one has simple
control over the nonlocality of the rules using
rotation and spatial magnification, and over the
number of neighboring pixels using the focus .
A monochrome system, employing an intensity

threshold to give crisp black and white images,
could be used to simulate binary cellular automata.
This restriction on the intensity range falls far
short of the possible pixel information in video
systems . Indeed, as discussed in the appendix,
color systems are capable of transmitting roughly
20 bits of information per pixel . This includes a
random "noise floor" for small signals . Gener-
alizing cellular automata, from a few states per site
to many, leads to lattice dynamical systems [13] .
This corresponds in the video system to removing
the above thresholding . Thus this video
configuration will be especially useful in the experi-
mental study of lattice dynamical systems and in
the verification of analytic and numerical results,
such as spatial period-doubling, found in some
nonlinear lattices [13] .
A number of video image processors are avail-

able, both analog and digital . Many have been
constructed solely according to their aesthetic
value by video artists . Certainly, among this group
there is a tremendous amount of qualitative under-
standing of video dynamics . At the other extreme
of the technical spectrum, some of the emerging
supercomputers have adopted architectures very
similar to that of video feedback systems . These
machines would be most useful in detailed quan-
titative simulations . And, in turn, video feedback
might provide an inexpensive avenue for initial
study of simulations planned for these large ma-
chines .

Physics has begun only recently to address com-
plex dynamical behavior . Looking back over its
intellectual history, the very great progress in
understanding the natural world, with the simple
notions of equilibrium and utter randomness, is
astounding . For the world about us is replete with
complexity arising from its intimate inter-
connectedness . This takes two forms . The first is
the recycling of information from one moment to



the next, a temporal inter-connectedness . This is
feedback . The second is the coupling at a given
time between different physical variables . In glob-
ally stable systems, this often gives rise to non-
linearities . This inter-connectedness lends structure
to the chaos of microscopic physical reality that
completely transcends descriptions based on our
traditional appreciation of dynamical behavior.
From a slightly abstract viewpoint, closer to my

personal predelictions, video feedback provides a
creative stimulus of behavior that apparently goes
beyond the current conceptual framework of dy-
namical systems. Video feedback poses significant
questions, and perhaps will facilitate their answer .
I believe that an appreciation of video feedback is
an intermediary step, prerequisite for our compre-
hending the complex dynamics of life .
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Appendix A

Video physics

There are many types of camera pickup tubes,
but for concreteness I will concentrate on the
common vidicon tube and describe how it converts
an image to an electronic signal . The vidicon relies
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on the photoconductive properties of certain semi-
conductors (such as selenium) . When light is inci-
dent on these materials their electrical resistance is
reduced . Photoconductors can have quite large
quantum efficiencies, approaching 100%, with vir-
tually all the incident photon energy being con-
verted to mobilizing electrons in the material . Once
energized these electrons diffuse in an ambient
electric field .
The vidicon takes advantage of these mobile

electrons in the following way . (Refer to fig . 3 .) An
image is focused on a thin photoconducting layer
(A) approximately one square inch in size . Spatial
variation in an image's light intensity sets up a
spatial distribution of mobile electrons. Under
influence of a small bias field these diffuse toward
and are collected at the transparent video signal
pickup conductor (B) . During operation the
photoconductor/pickup sandwich acts as a leaky
capacitor with spatially varying leakage : the more
incident light, the larger the local leakage current .
The electron beam (C) from the vidicon's cathode
scans the back side of the photoconductor depos-
iting electrons, restoring the charge that has leaked
away, and hence, bringing it to a potential com-
mensurate with the cathode . The coils (D) supply
the scanning field that moves the electron beam
over the photoconductor . They are driven syn-
chronously with the horizontal and vertical raster
timing circuits (top of diagram) . The output video
signal corresponds to the amount of charge locally
deposited by the beam at a given position during
its scan . This charge causes a change in the leakage
current and this change is picked up capacitively
and then amplified .
The important features of this conversion pro-

cess, aside from the raster scanning geometry
already described, are

1) the diffusion of electrons as they traverse the
photoconductor; and

2) the local storage and integration of charge
associated with the light incident during each raster
time .
The diffusion process directly limits the attainable
spatial resolution . This places an upper bound on
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the number of horizontal lines and the number of
pixels (distinct picture elements) within each line .
The effect on spatial patterns is that there can be
no structure smaller than this diffusion limit . An-
other interpretation of this is that, over the period
of several rasters, there is a diffusive coupling
between elements of an image .
The high spatial frequency cutoff can be easily

estimated . The electron beam forms a dot on the
photoconductor's backside approximately 1 to 2
mils in diameter . Diffusion then spreads this out to
roughly twice this size by the time these electrons
have traversed the layer, yielding an effective 3 to
4 mils minimum resolution. Fora vidicon with a
one inch square photoconducting target, this re-
sults in a limit of 250 to 300 pixels horizontally and
the same number of lines vertically . These are in
fact nominal specifications for consumer quality
cameras . Additionally, although the raster geome-
try breaks the image into horizontal lines, the
resolution within each line is very close to that
given by the number of scan lines . It will be a
reasonable approximation, therefore, to assume
that the spatial frequency cutoff is isotropic .

In a similar manner the charge storage and
integration during each raster time places an upper
limit on the temporal frequency response of the
system . In fact, this storage time T, can be quite a
bit longer than the raster time T r of 1/30 second . A
rough approximation to this would be
, r, ;z- IOT, z 1/3 second . Thus the system's frequency
response should always be slower than 3 Hz . And
this is what is observed experimentally . Even the
simplest (linear) model for video feedback must
contain spatial and temporal low pass filters corre-
sponding to the above limitations .
The optical system that forms the image on the

photoconductor has spatial and temporal band-
widths many orders of magnitude greater than the
vidicon itself. Hence these intrinsic optical lim-
itations can be neglected . The optical system con-
trols, however, are quite significant . The focus, for
example, can affect an easily manipulated spatial
diffusion by moving the image focal plane before
or behind the photoconductor . In addition, by
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adjusting it to one side of exact focus the diffusion
orientation can be inverted . Very small changes in
the zoom, or spatial magnification, can have quite
large qualitative effects because the image informa-
tion repetitively circulates in the feedback loop . A
spatial magnification greater than unity increases
exponentially with the number of passes through
the loop . Similarly, adjusting the admitted light
with the f/stop can cause the light in an image to
dissipate completely when set below some intrinsic
threshold .
The image intensity can again be adjusted with

the brightness control on the monitor, perhaps to
compensate for the camera's f/stop setting. The
brightness adjusts the DC intensity level of the
video signal, while the contrast amplifies its dy-
namic range, or the AC portion of the video signal .
High contrast will amplify any noise or spurious
signal into an observable flickering ofthe image . A
monochrome monitor's screen (E) is coated with a
uniform layer of phosphor that emits light when
struck by the electron beam (G) . Using the mon-
itor's driving coils (D), the raster synchronizing
circuits move the beam to the appropriate position
on the screen for the incoming video signal . This
signal modulates the beam's intensity (F) . The
screen's spatial resolution is effectively continuous
with a lower bound significantly less than that
imposed by the vidicon resolution and by the finite
number of scan lines . Additionally, the phosphor
stores each raster for a short time to reduce
flickering . Thus there is another image storage
element in the feedback loop . The phosphor's
persistence is typically a single raster time and so
it can be neglected compared to the vidicon's
storage time .

There are a number of sources of error, or
deviations from the idealized video feedback sys-
tem . Here I will briefly mention a few that could
be taken, more or less easily, into account in the
modeling, but for simplicities sake will not be
included. The first omission that I have made in
describing the functioning of video systems, is that
the bulk of them transmit two interlaced half-
rasters, or fields, every sixtieth of a second. A



complete raster is still formed every thirtieth of a
second, but the successive images appear to flicker
less than without interlaced fields . Since the time
scale of this is much less than the image storage
and integration time of the vidicon it can be
neglected .
A second and important error source is the

intrinsic noise of the intensity signal . A number of
physical processes contribute to this noise. The
discreteness of the quantum processes and the
electron charge produce resistive noise in the pho-
toconductor . The electronic amplifiers for the sig-
nal also introduce noise. The net effect though is
a signal to noise ratio of about 40 db . This trans-
lates into about 10 mV white noise superimposed
on the 1 V standard video signal, or into about 1
fluctuation in the intensity of pixels on the mon-
itor's screen .
The photoconductor's monotonic, but non-

linear, current output io as a function of light
intensity I, adds a third error. For vidicons io - I;,
with 7 e[0.6, 0;9] . Furthermore, this response func-
tion saturates above some intensity threshold I,
Vidicon photoconductors also exhibit a non-
uniform sensitivity of about 1% over the target
region .
When the camera is very close to the monitor,

there is significant geometric distortion due to the
screen's curvature. Geometric distortion also arises
from other errors in the system, such as the
adjustment of the horizontal and vertical raster
scanning circuitry . These distortions can be re-
duced to within a few percent over the image area .
Finally, within the monitor there are saturating
nonlinearities in its response to large intensity
signals and high brightness or high contrast set-
tings . This list is by no means exhaustive, but at
least it does give a sense of the types of errors and
their relative importance .
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